

Experimentation of Different Oyster Growing Methods and Spat Retention in Oyster Bay, Florida

A. Wynna, B. Ballarda, M. Marquezb, C. Jagoeb

^aWakulla Environmental Institute, Tallahassee Community College, Crawfordville, FL ^bSchool of the Environment, Florida A&M University, Tallahassee, FL

Oyster Growing Methods

Objective:

- Compare OysterGro Floating Cages vs Seapa Hybrid Cages
 - × 20,000 Triploid (3n) oysters

Measure:

- Length
- Oyster Tissue Dry Weight
- Practicality of each Growing Method

Oyster Growth

Length vs Days

Oyster Growth

Tissue DW vs Days

Oyster Growth

Length vs Tissue DW

One Way RM ANOVA

F_(1,109)=2.038, p=1.243 *Not Significant

Conclusions

- Length growth rates
 - Not significant
- Oyster tissue biomass
 - Significant
- Length vs oyster tissue biomass
 - Not Significant
- Practicality
 - o Lost 9 of 12 Seapa Hybrid Cages during Hurricane Michael
 - Lower mortality in OysterGro cages
 - o Higher mortality in Seapa due to increased temps / design.

Oyster Domes

• Objective:

• Determine the effects farms utilizing diploid (2n) oysters have on the wild oyster population.

• Measure:

Oyster recruitment on cement oyster domes.

Design

Results

- Depth comparison in oyster percent cover
- One Way RM ANOVA:
 - Arc sin x+1 transformation
 - Significant difference
 - $F_{(2,76)}$ =3.36, p=0.36
- Post-Hoc Tukey:
 - Significant difference in 1' subtidal treatment (most oyster cover)

Final Results

After full Fall spawn

Within two months

Significant coverage *inside*

Significant coverage

<u>outside as well on domes</u>

<u>Spring spawn</u>

300-500 mature Oysters High success rate of retention due to confined protected space.

Future Work

- So why is this important?
- Formulation of Advisory Council
 - Scientific Experts, Past Students, Legislators, Business Leaders, Stakeholders, etc.
 - Identify Challenges, mitigating factors
- Oyster Aquaculture: Environmental, Economic, and Legislative challenges.
- In Wakulla County, Oyster Aquaculture is third largest Employer
- After two years, 6-8 Million Oysters in Bay. From Barren Desert to teaming with life CLEAN WATER.

Future Work

- How can we export clean water deployable?
- RESTORD-Tech (Restoring Seed Through Oyster Reef Dome Technology).
- Sarasota \$44,000,000.00 impact from RED TIDE
- Florida has the second largest coastline /Tourism
- Thousands of years Oyster Reefs were along Eastern Seaboard/ Nature took its course.
- Answers two questions:
 - One of the answers to re-seeding Apalachicola Bay
 - Will effectively combat Red Tide and other HAB's

Acknowledgements

GSMFC - Funding

WEI Aquaculture Students and Staff

FAMU Graduate/Under Grad Students

Aquaculture Research

- Worldwide Decline of Oyster Populations
 - >1% of historical levels (FAO, 2014)
 - Need for increased oyster production
- Increased demand of oyster production (consumption)
 - Additional benefit is increased water quality
 - **×** Cleaner water
 - Improved aquatic habitat
- Filter Feeding
 - Remove organic matter
 - Causes low dissolved oxygen levels
 - ▼ Lower nutrient loading from terrestrial runoff

Aquaculture Research

- Waste Water Treatment is Limited
 - Effective for land-based water
 - Limited to coastal pollution/runoff
 - ▼ While there is an increase in coastal pollution/excessive nutrient removal
- Studies show filter feeding shellfish can remove nutrients
 - Providing an ecosystem service of water quality improvement
 - ➤ (Beseres-Pollack et al., 2013; Bricker et al., 2014, 2015a, 2015b; Ferreira et al., 2007; Filgueira et al., 2014a, 2014b; Lindahl et al., 2005).

Aquaculture Research

- Eutrophication (excessive nutrients)
 - Excessive algal blooms
 - ➤ Harmful algal blooms (HABs)
 - Lower Dissolved Oxygen
 - Hypoxic/Anoxic Waters
 - Loss of Seagrass
 - ▼ Decreasing habitat
 - Nurseries
 - Less Oxygen

